Discrete-time Fourier series

SE[TL] _ Z akejk(27r/N)n
k= (N)

1 .
_ —jk(2n/N)n
ar = — g z[nle
n=(N)
Continuous-time Fourier series

ﬂ:(t): Z akejk(27r/T)t

k=—o00
1 ;

@y = —/x(t)e”k(%/ﬂtdt
T Jr

Continuous-time Fourier transform

1 e :
(1) = 5 / X (jw) et de

) — / (t)e—Ttdt
\—oo
Discrete-time Fourier transform
1 . .
zln] = py 27rX(e]‘“)eJ‘””dw
X(e) = Z z[n]e "

Laplace transform
1 ot 00 . jwt
z(t) = —e X (o + jw)e’* dw
2 oo
X(s) 2/ z(t)e *tdt

7 transform
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Fourier Series Representation of Periodic Signals Chap,é ;

Fourier Series Coefficients

Property Section Periodic Signal
x(#)] Periodic with period T and
y(®) fundamental frequency wo = 27T
Linearity 35.1 Ax(t) + By(t)
Time Shifting 352 x(t — to) A
Frequency Shifting eiMunt x(t) = eM@/T) x(t)
Conjugation 356 x*()
Time Reversal 353 x(—1)
Time Scaling 354 x(at), ¢ >0 (periodic with period T/a)
Periodic Convolution J x(T)y(t — 7)dT
T
Multiplication 3.5.5 x(t)y(®)
\
Differentiation dx()
dt
f fini d and
Inegration [ spaime e st
e periodic only if ap = 9]
Conjugate Symmetry for 3.5.6 x(t) real

Real Signals

Real and Even Signals Y\i.é x(?) real and even

Real and Odd Signals 35.6 x(f) real and odd

Even-Odd Decomposition {xe(t) = 8u{x(t)} [x(¢) real]
x,(8) = Od{x()} [x(?) real]

7|, o = > fai?

k=—

ax
b

Aay + Bby
ape IRt = age~ ke

ag-M
aik
a—g
23

Takbk

4o
§ abi-

I=-

jkﬁ)oak = jkz%rak

(bt
Jhkawo k_(m)a‘

ap = a-,

Refar} = Refa_i}
Imia,} = —9Imia_g}
laxl = lai|

Lay = —<a-x

ay real and even

ay purely imaginary and odd a

Refar}

three examples, we illustrate this. The last example in this section then demonstrates i
properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g() with a fundamental period of 4,

could determine the Fourier series representation of g(?) directly from the an

tion (3.39). Instead, we will use the relationship of g(?) to the symmetric pelfi"d’
wave x(f) in Example 3.5. Referring to that example, we se€ that, with

T, =1,
2(6) = 2 — 1)~ 112

shown in Figure 310 "
alysis &

T;'»**”

N
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Thus, in general, none of the finite partial sums in €q. (3.52) yield the exact values of x(r),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
1 Fourier series. This can be readily seen by comparing the discrete-time Fourier series
- properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Periodic Signal

Fourier Series Coefficients

x[n] ] Periodic with period N and
y[n] J fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n — nyl
IMQaiNn x[n]

x"[n]
x[—n]

x[n/m], if nis a multiple of m
Xmy[n] = I .

0, if n is not a multiple of m
(periodic with}criod mN)

> xlrlyln—n

r=(N)
x[n]yln]
x[n] — x[n— 1]
z finite valued and periodic only
> xlk,
ifag =0

k=—-w
x[n] real

x[n] real and even
x[n] real and odd

{ x.[n] = &{x[n]} [x[n] real]
%o[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

S P = S lap

n=(N) k=(N)

a; | Periodic with

ageik@miNm

A~Mm

a’. k

a—x

1 a viewed as periodic
m*\with period mN

Nakbk

Z aby

1=(N)
(1 _ e—jl((l'rrIN))ak

1
(mj)“k
a, =a’,
Refa} = Refa_i}
Imla,} = —9mia_i}

lar] = la_i
Yar = —Ya_;

a; real and even

a; purely imaginary and odd
GRefar}

JIm{a}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consid-
hese are summarized ip

ered some of the important properties of the Fourier transform. T
Table 4.1, in which we have also indicated the section of this chapter in which each prop.

erty has been discussed. :
In Table 4.2, we have assembled a list of many of the basic and important Fourier

transform pairs. We will encounter many o

PROPERTIES OF THE FOURIER TRANSFORM

f these repeatedly as we apply the tools of

TABLE 4.1
Section Property Aperiodic signal Fourier transform
x(f) X(jw)
¥(® Y(jw)
43.1 Linearity ax(t) + by(® aX(jw) + bY(jo) =
432 Time Shifting x(t — o) e P X (jw)
43.6 Frequency Shifting 270 (1) X(j(w — wo))
433 Conjugation x(®) X (—jw)
435 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1—X i
. la"\ a
Scaling
44 Convolution x(8) * y(© X(je)Y(jo)
45 Multiplication X)y® il;rrmxg 8)Y(j(w — 8)do
434 Q}fferentiation in Time % x(2) joX(jo)
\
1
434 Integration J x(@)dt J_'la—)X( jw) + mX(0)8(@)
436 Differentiation in tx(0) J Ed—X (jo)
Frequency =
X(jo) = X (—jo)
RefX(j)} = RefX(=jo)
433 Conjugate Symmeiry x(t) real ImX(jw)} = —Im{X(=jol
for Real Signals X(jw)l = X jo)l
WX (jw) = —4X(=j0)
433 Symmetry for Realand  x(?) real and even X(jow) real and even
Even Signals L
433 Symmetry for Real and  x() real and odd X(jw) purely imaginary and 06
Odd Signals '
() =& j
433 Even-Odd Decompo- *e(t) _ ov{x(t)} [x(®) real] (_}:I\e{);(](f))}
sition for Real Sig- x,(f) = Od{x @} [x() real] j9mX(j )}
nals
437 Parseval’s Relation for Aperiodic Signals

J+m |x(0)*dt

1 (™
- o | EGwPdo
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TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS
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Fourier series coefficients

Signal Fourier transform (if periodic)

hit i
Z{ ageltn 2T Z ad(w — kwy) ay
k=-w k=-w
plwt 278 (w — wy) ay=1

ay = 0, otherwise

= 4. = !

cos wot T[6(w — wo) + 8(w + wyp)] Q=g =g .

a, = 0, otherwise

1
- m a = —a_) =
sinwy? —[6(w — — 8w + 2j
= j[ (r=2ums) (@ +wo)] a;, = 0, otherwise

a =1 a =0 k>0

x(t) =1 27 6(w)

this is the Fourier series representation for
any choice of T > Q

Periodic square wave
1, It ' <T
o) = [0, T <l =
and
xt+T) = x(t)

N~

0 .
Z 2sin :(DoTl 6((1) _ kwo)

k=-o

sin kwo Tl
kr

on| o (kon| )
smc .
o m

b 27 & 27k 1
"Zm 8(t — nT) T kgﬁa@ —T—> ay = & forallk
1, lt[ <T \ ZSianl
t —_— —
X ){ 0 ltf>T ]
sin Wt o [L jel<w
at X(w) = [O, lo| > W -
8@ 1 —
G L ) —
u < 7 m
3(t — 1) e~ Juh —
“u(t), Ref{a} > 0 L —
R e a+ jo
te " u(t), Refa} > 0 S —_
’ (a+ jo)
ey e o), 1 _
(a+ jo)r

Refa} >0
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TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ej"')} periodic with
yin] Y(e’*)] period 27
532 Linearity ax{n] + byln] aX(e’) + by (e™)
533 Time Shifting x{n — no} e“/“’_""X(e"")
5.3.3 Frequency Shifting &/0" x{n) X(e/wwoly
53.4 Conjugation x'[n] X(e™ )
5.3.6 Time Reversal x[—n) X(e™ )
: : _ [ x[n/k}, if n = multiple of k ke
5.3.7 Time Expansion Xwlnl = [ 0. i#'s semultple ot & X(ev ) |
5.4 Convolution x[n] * y[n] X(e/)Y ()
55 Mutltiplication x[nlyln] % J X(e)Y(e/“=9)d0
27
53.5 Differencing in Time x[n] — x[n—1] (1 — e /)X(e/)
535 Accumulation kgw x[k] o X )
+o
+7X(e/%) Z 8(w — 2mk)
k=-=
53.8 Differentiation in Frequency  nx{n} ,d}ﬂ:;::"’)
X(e’) = X*(e7*)
Re{X(e™)} = Re{X (e *)}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e~7)}
Real Signals |X(ei)| = |X(e=i)|
LX(e/*) = —LX(e )
534 Symmetry for Real, Even % x[n] real an even X(e’®) real and even
Signals % T
534 Symmetry for Real, Odd x[n] real and odd X(e/?) purely imaginary and
Signals odd
534 Even-odd Decomposition x.[n] = &{x[nl} [x[n] real] Re{X(e/)}
of Real. Signals %,[n) = Od{x[nl} [x[n] real] jImiX(e)}
539 Parseval’s Relation for Aperiodic Signals

> lsalp

n=-w

1

w

—_ Jwy|2
5 L' [X(e/)Pdes

a duality relationship between the discrete-time Fourier transform and the continuous-time
Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-

quence a; are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
+eo
Z akejk(anN)n 2T Z akS (0) _ 2_"__") a
= N
k=(N) ==
@ wg =2
: = 1, k=mm=zNm=2N,,
e/vo" 29 8(w — wg — 27l) a = T
1;:» ¢ £ 0, otherwise
(b) ;’—10' irrational > The signal is aperiodic
@ wo =4
4o 1 = -
coswon L Z {8(w — wo — 27l) + 8(w + wy — 27} a =1% xm EmEN, Tm 2N,
st 0, otherwise
(b) ‘2'-% irrational > The signal is aperiodic
@ wy =%
ror o k=rnrENrEN,
. ki J
sinwgn 7 Z{&(w—wo—Zwl)—S(w +w0—2771)} ag = _7%' k= —r—-r=N —r=2N . :
o 0, otherwise
(b) 32 irrational 3> The signal is aperiodic
s I, k=0%=N ®2N,...
x[n] =1 21 > 8w ~ 2ml) a =
[=—w 0, otherwise
Periodic square wave
i 1, |l =N, . . sin[mk/NY(N + §)] 0 T
xfn] = oo T T R E S e | h =1V, — y e
o N<lpl=N2 | 2> akﬁ(w _ 27k k= T N2 k2N] :
and k=—w N 2N + 1
ay = N , k=0,%=N, £2N,...
x[n + N] = x[n] .
= 27'7\‘ s 2k 1
k;ﬁb‘[n — kN1 ~ kaB(w - —A—,—) a = 5 for all k
a*uln), lal <1 1 _
g 1—ae Jo
1, = N i l
] lnl = Ny sinfo + 7)1 -
0, |al>N, sin(w/2)
. , O=<lo|=W
sinWn W Wn ®
SR = = sine |— X(w) =
O<W<m X(w) periodic with period 27
8[n} 1 _
1 L
ufn] T—eJo + k;mﬂ'b‘(w —2ark) —
8[n — nol g~ iono —
(n+ Da'uln], |la <1 ——l——~ —
(1 — ae~jo)?
(m+r=1 , 1
— < — = -
= & U el <1 = ae Joy
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