Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n} \tag{2}$$

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk(2\pi/T)t}dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$
 (5)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 (6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \tag{7}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
 (9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \tag{10}$$

Z transform

$$x[n] = r^n \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$
(12)

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Section	Periodic Signal	Fourier Series Coefficient
	$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
3.5.1 3.5.2 3.5.6 3.5.3 3.5.4	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$ $x(-t)$ $x(\alpha t), \alpha > 0 \text{ (periodic with period } T/\alpha)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 l_0} = a_k e^{-jk(2\pi/T)l_0}$ a_{k-M} a_{-k}^* a_{-k} a_k
	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
	$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
	$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)$ $\left\{a_k = a_{-k}^*\right\}$
3.5.6	x(t) real	$\Re e\{a_k\} = \Re e\{a_{-k}\}$ $\Im m\{a_k\} = -\Im m\{a_{-k}\}$ $ a_k = a_{-k} $ $\Im a_k = - \Im a_{-k}$
3.5.6 3.5.6	x(t) real and even x(t) real and odd $\begin{cases} x_e(t) = \mathcal{E}v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and a_k $\Re \{a_k\}$ $j \Im \{a_k\}$
	Parseval's Relation for Periodic Signals	
	3.5.1 3.5.2 3.5.6 3.5.3 3.5.4 3.5.5	$x(t) \text{ Periodic with period T and fundamental frequency } \omega_0 = 2\pi/T$ 3.5.1 $Ax(t) + By(t)$ 3.5.2 $x(t - t_0)$ $e^{jM\omega_0 t} x(t) = e^{jM(2\pi/T)t} x(t)$ 3.5.6 $x^*(t)$ 3.5.3 $x(-t)$ 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) $\int_T x(\tau)y(t - \tau)d\tau$ 3.5.5 $x(t)y(t)$ $\frac{dx(t)}{dt}$ $\int_{-\infty}^t x(t) dt \text{ (finite valued and periodic only if } a_0 = 0$ 3.5.6 $x(t)$ real and even

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10. could determine the Fourier series representation of g(t) directly from the analysis equation (2.20). Instead of the series representation of g(t) directly from the analysis equation (2.20). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic square g(t) in Equation (3.39). wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 $T_1 = 1$,

$$g(t) = x(t-1) - 1/2.$$

ap. 3

4.

uence in 106), we have

(3.10)

lude 1

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi jN)n}x[n]$ $x^*[n]$ $x[-n]$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k}
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$
Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication .	x[n]y[n]	$\sum_{l=\langle N \rangle} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_{\nu}$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{aligned}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re\{a_k\}$ $j\Im\{a_k\}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\langle N \rangle} x[n] ^2 = \sum_{k=\langle N \rangle} a_k ^2$	

$$\frac{1}{N}\sum_{n=\langle N\rangle}|x[n]|^2=\sum_{k=\langle N\rangle}|a_k|$$

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

PROPERTIES OF THE FOURIER TRANSFORM

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM Fourier transform					
Section	Property	Aperiodic signa			
		x(t) y(t)		Χ(jω) Υ(jω)	
4.3.1 4.3.2 4.3.6 4.3.3 4.3.5 4.3.5 4.3.5 4.3.4 4.3.4 4.3.4	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication Differentiation in Time Integration Differentiation in Frequency	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t} x(t)$ $x^*(t)$ $x(-t)$ $x(at)$ $x(t) * y(t)$ $x(t)y(t)$ $\frac{d}{dt}x(t)$ $tx(t)$		$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$ $\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega - \theta))d\theta$ $j\omega X(j\omega)$ $\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$ $X(j\omega) = X^*(-j\omega)$	
4.3.3	Conjugate Symmetry for Real Signals	x(t) real		$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ g_{m}\{X(j\omega)\} = -g_{m}\{X(j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not\propto X(j\omega) = -\not\propto X(-j\omega) \end{cases}$ $X(j\omega) \text{ real and even}$	∫/ _j (− jω υ)
4.3.3	Symmetry for Real and Even Signals	x(t) real and even $x(t)$ real and odd		$X(j\omega)$ purely imaginary	and o
4.3.3	Symmetry for Real and Odd Signals	$x(t)$ rear and odd $x_e(t) = \mathcal{E}v\{x(t)\}$	[x(t) real]	$\Re e\{X(j\omega)\}$	
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$\mathbf{r}_{t}(t) = \Omega d\{\mathbf{r}(t)\}$	[x(t) real]	$jgm\{X(j\omega)\}$	
4.3.7	Parseval's Rela	ation for Aperiodic Sig	nals		

4.3.7 Parseval's Relation for Aperiodic Signal
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

ORM PAIRS

we have conside summarized in which each prop-

nportant Fourier ply the tools of

ransform

issadi ukis se serja

White:

- θ))dθ

 $))\delta(\omega)$

 ω) $e\{X(-j\omega)\}$

 $\mathfrak{Im}\{X(-j\omega)\}$

 $i\omega)$

 (ω)

inary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
e ^{jw₀t} .	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
COS ω ₀ t	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
sin Wt πt	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$	_
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	
$\int_{n-1}^{t^{n-1}} e^{-at} u(t),$ $\operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	<u>·</u>

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
		x[n]		$X(e^{j\omega})$ periodic with
		y[n]		$Y(e^{j\omega})\int$ period 2π
5.3.2	Linearity	ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
5,3.3	Time Shifting	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]		$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], \\ 0, \end{cases}$	if $n = \text{multiple of } k$ if $n \neq \text{multiple of } k$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	•	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n]-x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$egin{array}{l} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ \Im e\{X(e^{j\omega})\} &= -\Im e\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \end{array}$
				$ \left\langle X(e^{j\omega}) = -\langle X(e^{-j\omega}) \right\rangle $
5.3.4	Symmetry for Real, Even \ Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}v\{x[n]\}$	[x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = Od\{x[n]\}$		$i \mathfrak{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Rel	ation for Aperiodic S		J=[42(0 /)
		$^{2}=\frac{1}{2\pi}\int_{2\pi} X(e^{j\omega}) ^{2}$	_	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

1 $X_2(e^{j\omega})$. The riodic convolu-

ıle 5.15.

ete-time Fourier In Table 5.2, we transform pairs

netry or duality corresponding on (5.8) for the te-time Fourier Idition, there is

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	_
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	-