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1 Executive Overview

In Weeks 8–9, we enhanced our pipelined processor by integrating cache support to reduce

memory access overhead. By storing frequently accessed data in on-chip memory (caches),

we introduced additional hardware, including registers and logic units. We implemented

separate Level-1 (L1) instruction and data caches to eliminate structural hazards in the

pipeline’s fetch and memory stages. For the data cache, we adopted a 2-way set associativ-

ity configuration to minimize conflict misses and employed an LRU (Least Recently Used)

replacement policy for both caches. While adding caches slightly increases the miss penalty

due to the additional cache lookup time, it significantly improves hit rate and access latency.

This aligns with Amdahl’s Law by optimizing the common-case performance, leading to

reduced overall execution time.

To further enhance performance, we extrapolated the design into a multicore architec-

ture. We integrated two pipelined cores with caches through a shared bus controller. To

manage concurrent access to shared global memory, we implemented the MSI (Modified,

Shared, Invalid) coherence protocol. This protocol ensures single-writer, multiple-reader

consistency at any given time. The multicore setup offers significant advantages over a

single pipelined processor with cache by enabling parallel instruction execution via parallel

algorithms. While individual instruction latencies may increase due to bus protocol over-

head, the overall throughput nearly doubles, thanks to the simultaneous operation of the

two cores and the snoop-based cache coherence mechanism.

In conclusion, our multicore processor achieved up to a 2× throughput increase and

reduced memory accesses during parallel algorithm execution, resulting in a highly efficient

design.
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2 Processor Design

Figure 1: top level Block diagram of Multicore Processor

2



Figure 2: Datapath of Multicore Processor3



Figure 3: Block diagram of Cache in Multicore Processor

Figure 4: State diagram of Caches in Multicore Processor
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Figure 5: Bus controller in Multicore Processor

Figure 6: State diagram of Bus controller in Multicore Processor
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3 Results

Testing both processor designs on the merge sort algorithm at various RAM latencies pro-

duced the max frequency of the CPU clock (Fmax) and the number of cycles taken for each

scenario within a log file. These values are depicted in table 1 below. The number of cycles

taken in the log file represents the number of cycles of the testbench, so the values were di-

vided by two before being used for other calculations, as the testbench clock is twice as fast

as the CPU clock. The number of CPU Cycles taken is the value depicted in the table below.

The FPGA resources needed for each design was also shown in the table below. Taking into

account that the instruction count of the merge sort algorithm the processor was tested on

is 5409 apart from dual thread mergesort which is 5429, we can calculate other important

values to judge processor performance. To calculate CPI we used the following equation:

CPI =
Total Number of CPU Cycles

Total Number of Instructions

Since the CPI, clock speed, and the number of instructions per program is known, the time

per program can be calculated using the iron law:

Execution time per program =
CPI ∗Number of Instructions per Program

CPU Clock Speed

From total execution time, the average latency of each instruction can be calculated using

this simple formula:

Average Latency = Number of Stages ∗ Execution time per program

Number of Instructions per Program

As mentioned before number of instructions per program will always be 5409 apart from

dual thread which is 5429 and the total number of CPU cycles and the CPU clock speed for

each processor and RAM latency can be found in the table. The number of stages will be

one for single cycle and five for pipelined, as there are five stages in the pipelined processor.

The calculated values can be seen below.
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Metric Single Cycle Pipelined Pipelined Multicore with Multicore with

with Caches single thread dual thread

FPGA Resources Utilized

Combinational Functions 2875 3297 8342 15027 15027

Registers 1287 1768 3972 8823 8823

RAM Latency = 0

CPU Clock (MHz) 30.68 63.37 57.94 53.67 53.67

CPU Cycles Taken 6906.5 9480.5 10215.5 17600.5 10835.5

CPI 1.28 1.75 1.88 3.25 2.00

Latency (ns) 41.62 138.29 162.98 303.14 185.94

Milliseconds/Program 0.2251 0.1496 0.1763 0.3279 0.2019

RAM Latency = 2

CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42

CPU Cycles Taken 13814.5 18897.5 11156.5 18739.5 11854.5

CPI 2.55 3.49 2.06 3.46 2.18

Latency (ns) 87.76 277.41 185.12 336.88 212.33

Milliseconds/Program 0.4747 0.3001 0.2002 0.3644 0.2305

RAM Latency = 6

CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42

CPU Cycles Taken 27628.5 37729.5 13139.5 21017.5 14033.5

CPI 5.11 6.98 2.43 3.89 2.58

Latency (ns) 175.53 553.86 218.02 377.83 251.35

Milliseconds/Program 0.9494 0.5992 0.2358 0.4087 0.2729

RAM Latency = 10

CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42

CPU Cycles Taken 41442.5 56561.5 15111.5 23295.5 16098.5

CPI 7.66 10.46 2.79 4.31 2.97

Latency (ns) 263.29 830.31 250.74 418.79 288.34

Milliseconds/Program 1.4241 0.8982 0.2712 0.4530 0.3131

Table 1: Comparison of Single Cycle and Pipelined Processors with/without Cache and

Multicore Processor with single/dual thread program
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4 Conclusion

Given the metrics calculated, the pipelined processor’s performance was superior to the single

cycle processor’s performance. Across all RAM latency values, the pipelined processor was

over 1.5 times faster. Clock speed doubled even though CPI went up from the single cycle

processor to the pipelined processor. When we look at the pipelined processor with caches,

it did decrease in clock speed compared to the plain pipelined model, and is slower at low

latencies, the CPI is vastly decreased at higher latencies thanks to caching, which provides

an immense speedup, 2.54 times faster at latency 6. However, due to some coherence delays

that occur in the implementation of multicore, it is actually slower than pipelined with caches

in dual thread programs. The single thread program is even worse, as it is simply a pipelined

single core cpu with caches while still having the overhead of coherence.

In conclusion, the most significant improvement of the processor came in implementing

caches which helped reduce the affect of ram latency on CPI, and is the best CPU model at

the mergesort benchmark task we used. Overall, this project demonstrated why caching is

very vital in modern CPUs and how multicore processors need to be optimized to give the

best performance.

5 Contributions

The original single cycle processor design that was built upon for the pipelined design was

created by Geetha Prasuna Yarramneni. Geetha created the hazard unit and forwarding unit

test bench, while Abhijay Achukola made the forwarding unit and the hazard unit testbench.

Abhijay created the pipelining latches and Geetha helped connect them to the datapath.

Geetha created Icache and Dcache testbench while Abhijay created Icache testbench and

Dcache. Block and State Diagrams of Icache are done by Geetha and Dache are done by

Abhijay. Bus controller is created by Geetha and Bus controller testbench is done by Abhijay.

Dcache integration with coherence protocol is done by Abhijay and corresponding testbench

is created by Geetha.
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