Processor Prototyping Lab
ECE 437
Final Report

Abhijay Achukola
Geetha Prasuna Yarramneni
Lab section 2

Zhaoyu Jin

8th December 2024

1 Executive Overview

In Weeks 8-9, we enhanced our pipelined processor by integrating cache support to reduce
memory access overhead. By storing frequently accessed data in on-chip memory (caches),
we introduced additional hardware, including registers and logic units. We implemented
separate Level-1 (L1) instruction and data caches to eliminate structural hazards in the
pipeline’s fetch and memory stages. For the data cache, we adopted a 2-way set associativ-
ity configuration to minimize conflict misses and employed an LRU (Least Recently Used)
replacement policy for both caches. While adding caches slightly increases the miss penalty
due to the additional cache lookup time, it significantly improves hit rate and access latency.
This aligns with Amdahl’s Law by optimizing the common-case performance, leading to
reduced overall execution time.

To further enhance performance, we extrapolated the design into a multicore architec-
ture. We integrated two pipelined cores with caches through a shared bus controller. To
manage concurrent access to shared global memory, we implemented the MSI (Modified,
Shared, Invalid) coherence protocol. This protocol ensures single-writer, multiple-reader
consistency at any given time. The multicore setup offers significant advantages over a
single pipelined processor with cache by enabling parallel instruction execution via parallel
algorithms. While individual instruction latencies may increase due to bus protocol over-
head, the overall throughput nearly doubles, thanks to the simultaneous operation of the
two cores and the snoop-based cache coherence mechanism.

In conclusion, our multicore processor achieved up to a 2x throughput increase and
reduced memory accesses during parallel algorithm execution, resulting in a highly efficient

design.

2 Processor Design

iREN
iaddr

datapathO
datapath1
icache0 dcache0 — icache1 dcache1
rite ccrite
cctrans cclrans
dREN iREN d?EN
. E i . dWEN
iaddr
iwpit dmem_load gg:c tore iwhit dmem_load ""‘_’a" ddtore
imem/| load \ ddr imem/| load ccmv_v daddr
ccwait cwait
ccsnoopaddr ccshoopaddr
Memory
controller
ramaddr dmemload
ramstore flamstate
ramREN
ramWEN
RAM

Figure 1: top level Block diagram of Multicore Processor

apoodo

yt

usny

LINN A
ONIQHYMEOS| H!
—]
BEHYMHO
YagvMaOod
1Saq0ay
ETEN — .|Nm_
S1Mbda 18!]
—] - LLiZlnsul
1segbely 1ppel 1sa(bey Jojesquab
" sjeIpgww|
] wu wuy ambal tetpeu
a 1 2iep) whuy | L hoaboy PR
pv} S nw at i
— T
0Py wp xnu L[e usnjy S0 N
[duwin(L dwn(—
£ “—Tosm
g & — 2Zvep! 8l TOSM o
- o1z 198169y
| nv - = ST _
2]
g duin(nopod Hep. isi J8)UN0o
ugyey ygueiq ‘g guny od weiboig
nopod Jnoyod ambas Jsur od~meu
uUSNIV
iun BO|Wwaw|
XNWl peojwewp E odinejdun PEO! P — 2SNV j_v.w.aﬂq_l
Bayoywew d
«u_:i _ T otz donv d onTv ZTouny
Jun - waun
BoLOILON jouerg joverg PUIE | joquog | UM Pror uswr
5% BERRITEN] BoHOIWa N B3p0odo
HOIWBa N <~ Jppel pwidwnf F
NOLOG/IpPEWAWP «—— opoodo 3 W 5
SWMWSN - = 3
]
R PESHWON g
| “p¥o[wBWp wawp [EEEE] e ey
Ty 2IS0d —— odine 1S3
«——— apoodo
0d od od
®N¢m‘_; 1si 2si
usni 1sepbai
apoodo
azooy)

Datapath of Multicore Processor

Figure 2

ICACHE 0

Tag Index

byt
432 offset

3130..6

ali}i Tag I Data

>

Hit/Miss

ihit

DCACHE 0
1 1
Tag » 2 I'
fise| Offse aIiI} Tag | Data a""l Tag | Data
3180.6 ka3 Piise] 77 ’¢
7 7
8 8
I— comparator
|_,compgrator
Data - Hit/Mis Data Hit/\liss Data
imemload
1 word
5\
A\
Data -
Hit/Mis memload
dhit 1 word

Figure 3: Block diagram of Cache in Multicore Processor

Icache
State
diagram

Q
o

read miss set valid

em fetched to icachg

Figure 4:

ccwait cctrans

anystate ————»snoop_WB1

snoop
Peache i Idwait
State
diagram lcctrans snoop_WB2
‘/!dwait
idle
if dirty bit is set
cache write miss .
(local write to cache " dirty1
and set dirty is 1) (wrltg tbalck 1st
after lihit, !fihit., or cache word tg mem)
counter digable read miss

Idwait

cache_clear
word to mem)
hit
Iqwait load1
(read 1 word
load2 <«— from memory)
(read 2nd word Idwait
from memory)

State diagram of Caches in Multicore Processor

iREN [

dREN
dWEN ___ |
cc_write —0m— ————————

ramstate I N

[Next State Logic

next_state

state

State

state

Output Logic

dwait _—
. iwait
im¢m_load X
ccinv
dmem_load cowait

ccgnoopaddr

Figure 5: Bus controller in Multicore Processor

rgmstate==access

=

amstate==access

ramstate==access\

dREN[0]&LRU

SNOOP_CO0
set cowait

ramstate==access

ramstate==acc|

ramstate==access
—

—_—
iREN[0]&Iru

Figure 6: State diagram of Bus controller in Multicore Processor

3 Results

Testing both processor designs on the merge sort algorithm at various RAM latencies pro-
duced the max frequency of the CPU clock (F,..) and the number of cycles taken for each
scenario within a log file. These values are depicted in table 1 below. The number of cycles
taken in the log file represents the number of cycles of the testbench, so the values were di-
vided by two before being used for other calculations, as the testbench clock is twice as fast
as the CPU clock. The number of CPU Cycles taken is the value depicted in the table below.
The FPGA resources needed for each design was also shown in the table below. Taking into
account that the instruction count of the merge sort algorithm the processor was tested on
is 5409 apart from dual thread mergesort which is 5429, we can calculate other important

values to judge processor performance. To calculate CPI we used the following equation:

Total Number of CPU Cycles

~ Total Number of Instructions

CPI

Since the CPI, clock speed, and the number of instructions per program is known, the time

per program can be calculated using the iron law:

CPI « Number of Instructions per Program
CPU Clock Speed

Execution time per program =

From total execution time, the average latency of each instruction can be calculated using

this simple formula:

Execution time per program

Average Latency = Number of Stages %
g Y / g Number of Instructions per Program

As mentioned before number of instructions per program will always be 5409 apart from
dual thread which is 5429 and the total number of CPU cycles and the CPU clock speed for
each processor and RAM latency can be found in the table. The number of stages will be
one for single cycle and five for pipelined, as there are five stages in the pipelined processor.

The calculated values can be seen below.

Metric

Single Cycle

Pipelined

Pipelined
with Caches

Multicore with

single thread

Multicore with

dual thread

FPGA Resources Utilized

Combinational Functions 2875 3297 8342 15027 15027
Registers 1287 1768 3972 8823 8823
RAM Latency = 0
CPU Clock (MHz) 30.68 63.37 57.94 53.67 53.67
CPU Cycles Taken 6906.5 9480.5 10215.5 17600.5 10835.5
CPI 1.28 1.75 1.88 3.25 2.00
Latency (ns) 41.62 138.29 162.98 303.14 185.94
Milliseconds/Program 0.2251 0.1496 0.1763 0.3279 0.2019
RAM Latency = 2
CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42
CPU Cycles Taken 13814.5 18897.5 11156.5 18739.5 11854.5
CPI 2.55 3.49 2.06 3.46 2.18
Latency (ns) 87.76 277.41 185.12 336.88 212.33
Milliseconds/Program 0.4747 0.3001 0.2002 0.3644 0.2305
RAM Latency = 6
CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42
CPU Cycles Taken 27628.5 37729.5 13139.5 21017.5 14033.5
CPI 5.11 6.98 2.43 3.89 2.58
Latency (ns) 175.53 553.86 218.02 377.83 251.35
Milliseconds/Program 0.9494 0.5992 0.2358 0.4087 0.2729
RAM Latency = 10
CPU Clock (MHz) 29.10 62.97 55.71 51.42 51.42
CPU Cycles Taken 41442.5 56561.5 15111.5 23295.5 16098.5
CPI 7.66 10.46 2.79 4.31 2.97
Latency (ns) 263.29 830.31 250.74 418.79 288.34
Milliseconds/Program 1.4241 0.8982 0.2712 0.4530 0.3131

Table 1: Comparison of Single Cycle and Pipelined Processors with/without Cache and

Multicore Processor with single/dual thread program

4 Conclusion

Given the metrics calculated, the pipelined processor’s performance was superior to the single
cycle processor’s performance. Across all RAM latency values, the pipelined processor was
over 1.5 times faster. Clock speed doubled even though CPI went up from the single cycle
processor to the pipelined processor. When we look at the pipelined processor with caches,
it did decrease in clock speed compared to the plain pipelined model, and is slower at low
latencies, the CPI is vastly decreased at higher latencies thanks to caching, which provides
an immense speedup, 2.54 times faster at latency 6. However, due to some coherence delays
that occur in the implementation of multicore, it is actually slower than pipelined with caches
in dual thread programs. The single thread program is even worse, as it is simply a pipelined
single core cpu with caches while still having the overhead of coherence.

In conclusion, the most significant improvement of the processor came in implementing
caches which helped reduce the affect of ram latency on CPI, and is the best CPU model at
the mergesort benchmark task we used. Overall, this project demonstrated why caching is
very vital in modern CPUs and how multicore processors need to be optimized to give the

best performance.

5 Contributions

The original single cycle processor design that was built upon for the pipelined design was
created by Geetha Prasuna Yarramneni. Geetha created the hazard unit and forwarding unit
test bench, while Abhijay Achukola made the forwarding unit and the hazard unit testbench.
Abhijay created the pipelining latches and Geetha helped connect them to the datapath.
Geetha created Icache and Dcache testbench while Abhijay created Icache testbench and
Dcache. Block and State Diagrams of Icache are done by Geetha and Dache are done by
Abhijay. Bus controller is created by Geetha and Bus controller testbench is done by Abhijay.
Dcache integration with coherence protocol is done by Abhijay and corresponding testbench

is created by Geetha.

